From Vacancy to Vitality: Quantifying Infill Opportunity in Little Havana, Miami

April 2018

National Trust for Historic Preservation
Preservation Green Lab
The Preservation Green Lab

The National Trust’s Preservation Green Lab strengthens communities by integrating historic preservation and sustainability. Founded in Seattle and now with staff across the country, the Preservation Green Lab conducts research, delivers policy innovations, and promotes adaptive reuse to ensure healthy, equitable, and resilient communities.

Cover Image:
Gradual infill development (represented in yellow) can add vitality without sacrificing neighborhood character.

CREDIT: PLUSURBIA DESIGN
Project Summary

Cities across the country are considering how to maintain community identity while also accommodating growth. In such scenarios, infill development presents an opportunity to add new vitality to vacant and underutilized spaces, while preserving existing cultural heritage.

In supporting the National Trust’s work in Miami’s Little Havana neighborhood, the Preservation Green Lab conducted analysis of the performance of Little Havana’s blocks of older, smaller, mixed-age buildings and analysis of the vacant space within the neighborhood. Our analysis shows that Little Havana has a significant amount of vacant land and few vacant buildings. We found a total of 550 vacant lots representing approximately 4.6 million square feet of vacant land. We also found 28 vacant buildings representing about 95,000 square feet of built space.

To estimate the additional residents, jobs, and businesses that could occupy the vacant lots and buildings of Little Havana, we used the Miami 21 zoning code, data on the current height of buildings in Little Havana, and recent data from the U.S. Census Bureau. By building out vacant lots and utilizing vacant buildings, about 10,000 new residents, 2,500 new jobs, and 550 new businesses could be housed in the already bustling neighborhood, even within our more modest build-out scenario. Our methodology for understanding Little Havana’s current vacancy and potential for additional vitality is described in detail on the following pages.
FACT: Little Havana can be home to new residents and greater economic opportunity without sacrificing its character and cultural vitality.

HOW?

1. **Identify existing vacancy.**

 Little Havana contains...

 - 550 vacant lots
 - 99 parking lots
 - 28 vacant buildings

 or

 4,600,000 square feet of vacant space

 - x7 Miami Marlins Stadiums
 - 6% of Little Havana’s land area
2. Activate and add infill.
Craft new policy that incentivizes infill and eases restrictions around building reuse.

By building neighborhood-scale infill development on vacant lots and parking lots, and activating vacant buildings, Little Havana can incorporate...

3. Welcome new residents and economic opportunity...
By building neighborhood-scale infill development on vacant lots and parking lots, and activating vacant buildings, Little Havana can incorporate...

...without demolishing a single building.

+2,500 new jobs and +10,000 new residents and +550 new businesses
Study Methods

Methodology for Estimating Vacancy

To calculate vacant parcels and vacant buildings, the Preservation Green Lab team analyzed Miami parcel data from the Florida Department of Revenue and vacant lot and building data from the City of Miami Neighborhood Enhancement Team (NET). We isolated parcels where attribute data indicated either zero square feet of built space on the lot, a zero value for property valuation of improvements made to the lot, or a land use code indicating vacant land. From that initial query, we compared the lots to a recent satellite image to confirm or reject its vacancy status. When not otherwise indicated by the data, we added lots that did not appear to have a building or a public park.

To confirm or reject the vacancy status of parcels of land, we used the most recent satellite imagery available on Google Maps, taking care to include:

- Vacant lots
- Lots used exclusively for surface parking

We did not include the following:

- Public parks
- Active construction sites
- Parking lots located on parcels that also had buildings (e.g., parking spaces outside a restaurant)

To verify the vacancy status of buildings and lots reported to the Miami NET office, we reviewed the most recent satellite imagery and Street View imagery available on Google Street View. We began by isolating only properties that were reported as vacant in 2016 or 2017. This left 43 possibly vacant commercial buildings or lots and 65 possibly vacant residential buildings or lots. As we analyzed the satellite and Street View imagery for these 108 properties, we counted as “confirmed vacant” only those properties that were clearly devoid of a building, clearly had boarded-up windows or doors, or clearly had posted signs on the building indicating that city staff had visited the property and officially flagged it as vacant. After reviewing the Miami NET data, we confirmed the presence of four vacant commercial buildings, ten newly-identified vacant commercial lots, one vacant mixed-use building, 23 vacant residential buildings, and 14 newly-identified vacant residential lots—a total of 52 vacant properties from the original 108 properties identified by the NET staff.
Methodology for Estimating Potential for New Residents, Jobs, and Businesses

We used the Miami 21 zoning code, data on the current height of buildings in Little Havana, and recent data from the U.S. Census Bureau to estimate the additional vitality that could be created if the vacant lots and buildings of Little Havana were occupied by additional residents, jobs, and businesses. In one scenario, we assessed the additional potential uses if all vacant lots in the neighborhood were developed with new buildings constructed to the maximum allowed height, lot coverage, and density associated with its corresponding zone from the Miami 21 zoning code. In a second scenario, we assessed the additional uses if all vacant lots in the neighborhood were developed with new buildings no taller than the tallest nearby building within about two-blocks of the lot. The results of analysis for both scenarios are included in this report.

Map 1. Vacant Parcels in Little Havana, Miami
Approximately 4,600,000 square feet of vacancy
Results

Scenario One: Maximum Allowed Density

Based on our review of Miami’s parcel data and the Miami 21 zoning code, we found 369 vacant residential-commercial mixed-use lots, 126 vacant residential multifamily lots, 59 vacant residential single-family lots, nine vacant industrial/commercial lots, eight civic institution lots, and four civic space lots, a total of 575 lots and partial lots. Note that some of these lots run across multiple specified zoning areas, so these figures include 25 lots that were split in two.

We assumed that lots on areas zoned only for industrial or commercial uses will only include jobs and businesses, that mixed-use residential/commercial lots will include commercial activity only on their first floor with residential uses on upper floors, and that residential lots will be occupied only by residential uses.

Working from the maximum allowed building heights, maximum allowed lot coverage, and maximum allowed dwelling units per acre, we found that about 18M square feet of residential space can be accommodated on the 71.8 acres of space zoned for residential activity. Working from the allowed dwelling units per acre, this amounts to potential for 6,572 additional dwelling units. When we included the 24 confirmed vacant residential and mixed-use buildings, we identified a total of 6,675 additional dwelling units. Based on a current average of approximately 2.5 residents per dwelling unit in Miami, that equates to 16,688 residents. In the 2010 Census, the blocks of Little Havana were home to 62,760 residents. Thus, additional development capacity exists to provide housing for about one new resident for every four current residents.

Turning to vacant buildings and lots zoned for mixed-use, commercial, and industrial uses, we found potential for 3,645,295 square feet for additional businesses and associated jobs. This is a conservative estimate based on the assumption that commercial space will only be on the first floor of mixed-use buildings. Using 2014 Longitudinal Employer-Household Dynamics data from the Center for Economic Studies at the U.S. Census Bureau, we calculated a current average of about 4.6 jobs and 1.4 businesses per 5,000 commercial square feet. To ensure that our estimates are conservative, we rounded down to 4.5 jobs and one business per 5,000 commercial square feet. Using these conservative numbers, we found additional commercial capacity for 3,281 jobs and 729 businesses in vacant lots and buildings. For comparison, we calculated a current count of 7,851 jobs in Little Havana and 2,515 businesses, which indicates potential for a 42 percent increase in the number of jobs in the neighborhood and a 29 percent increase in the number of businesses in the neighborhood.
Table 1. Scenario One Findings

Quantifying Vacant Space and Potential for Additional Vitality by Development Zone

<table>
<thead>
<tr>
<th>Zone</th>
<th>Zoning Description</th>
<th>Count of Vacant Lots / Partial Lots</th>
<th>Total Lot Area (Sq. Feet)</th>
<th>Max Allowed Height (Floors)</th>
<th>Max Allowed Lot Coverage</th>
<th>Max Allowed Dwelling Units / Acre</th>
<th>Projected Count of New Dwelling Units</th>
<th>Projected Count of New Residents</th>
<th>Projected New Commercial Sq Ft</th>
<th>Projected Count of New Jobs</th>
<th>Projected Count of New Businesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>Civic Institutional</td>
<td>8</td>
<td>280,931</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>CS</td>
<td>Civic Space</td>
<td>4</td>
<td>21,308</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>D1</td>
<td>Work Place</td>
<td>3</td>
<td>31,398</td>
<td>8</td>
<td>80%</td>
<td>36</td>
<td>18</td>
<td>45</td>
<td>25,118</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>D3</td>
<td>Waterfront Industrial</td>
<td>9</td>
<td>190,692</td>
<td>8</td>
<td>90%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,372,980</td>
<td>1,236</td>
<td>275</td>
</tr>
<tr>
<td>T3</td>
<td>Sub-Urban</td>
<td>59</td>
<td>318,966</td>
<td>2</td>
<td>50%</td>
<td>9/18</td>
<td>50</td>
<td>124</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>Urban General</td>
<td>132</td>
<td>912,680</td>
<td>3</td>
<td>60%</td>
<td>36</td>
<td>416</td>
<td>1,039</td>
<td>134,181</td>
<td>121</td>
<td>27</td>
</tr>
<tr>
<td>T5</td>
<td>Urban Center</td>
<td>75</td>
<td>503,657</td>
<td>5</td>
<td>80%</td>
<td>65</td>
<td>488</td>
<td>1,219</td>
<td>380,429</td>
<td>342</td>
<td>76</td>
</tr>
<tr>
<td>T6-8</td>
<td>Urban Core</td>
<td>215</td>
<td>1,723,719</td>
<td>8</td>
<td>80%</td>
<td>150</td>
<td>4,205</td>
<td>10,511</td>
<td>1,263,876</td>
<td>1,137</td>
<td>253</td>
</tr>
<tr>
<td>T6-12</td>
<td>Urban Core</td>
<td>70</td>
<td>553,047</td>
<td>12</td>
<td>80%</td>
<td>150</td>
<td>1,397</td>
<td>3,491</td>
<td>442,438</td>
<td>398</td>
<td>88</td>
</tr>
<tr>
<td>ALL VACANT LOTS</td>
<td></td>
<td>575</td>
<td>4,536,399</td>
<td></td>
<td></td>
<td></td>
<td>6,572</td>
<td>16,430</td>
<td>3,619,022</td>
<td>3,257</td>
<td>724</td>
</tr>
<tr>
<td>Vacant Residential Buildings</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td>248</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vacant Mixed-Use Buildings</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>10</td>
<td>4,998</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Vacant Commercial Buildings</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>21,275</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL POTENTIAL</td>
<td></td>
<td>596</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,675</td>
<td>16,688</td>
<td>3,645,295</td>
<td>3,281</td>
<td>729</td>
</tr>
</tbody>
</table>
Scenario Two: Buildings to Compatible Height and Scale

In a second scenario, we calculated the development potential of vacant land and buildings if new construction was comparable in size to the scale of existing structures.

Working from the current height of the tallest building located within two blocks, we found that about 11.7 million square feet of residential space can be accommodated on the 71.8 acres of space zoned for residential activity. Working from the allowed dwelling units per acre and factoring in the 24 confirmed vacant residential and mixed-use buildings, this amounts to potential for 4,062 additional dwelling units. Based on a current average of approximately 2.5 residents per dwelling unit in Miami, that equates to 10,155 new residents. As Little Havana was home to 62,760 residents in the 2010 Census, the additional development capacity under this more modest development scenario could still house about one new resident for every six current residents.

Once again turning to vacant buildings and lots zoned for mixed-use, commercial, and industrial uses, we found potential for 2,771,198 square feet for additional jobs and businesses. Again, this is a conservative estimate based on the assumption that commercial space will only be on the first floor of mixed-use buildings. Using our conservative estimates for current commercial activity in Little Havana of about 4.5 jobs and one business per 5,000 commercial square feet, we found additional commercial capacity of approximately 2,494 jobs and 554 businesses in developable space. For comparison, we calculated a current count of 7,851 jobs in Little Havana and 2,515 businesses, which indicates potential for a 32 percent increase in the number of jobs in the neighborhood and a 22 percent increase in the number of businesses in the neighborhood, even within a more modest build-out scenario.
Map 2. Scenario Two

In the second scenario, the Preservation Green Lab researchers compared the locations of confirmed vacant parcels (yellow) with the maximum heights of nearby buildings. Darker squares indicate taller structures and the number at the center of the square indicates the number of floors of the tallest building standing in that 200 x 200 meter square. The Little Havana neighborhood boundaries are also displayed as a dashed line.
Conclusions

Study Implications

This analysis suggests that while Little Havana is already a dense, thriving place, there exists further potential for additional residents, housing, businesses, and jobs within the neighborhood’s empty lots and vacant buildings. Smart, human-scale infill development could complement Little Havana’s character-rich buildings and blocks, bringing more foot traffic, patronage of local businesses, and tax revenue for the city. Whether new development takes full advantage of the allowed height and density in the city’s current zoning code as in Scenario one or is built to more modest heights as in Scenario two, it is clear that there is potential for millions of square feet of new space, which could house thousands of new residents and jobs and hundreds of new businesses.

To capitalize on this potential, city policies should be reviewed and revised to ensure that barriers to building reuse are removed and neighborhood-scale infill development is encouraged. Space that is currently used for parked cars could house incoming residents and businesses. To ensure that people from outside the neighborhood can still visit without major inconvenience, the full suite of multi-modal transportation options, including bicycling, walking, mass transit, and car/rideshare should be seen as fundamental to the future of the neighborhood and the city. To ease the transition to these alternative transportation options, some surface parking lots should be built up into parking garages. These are not insurmountable barriers, especially given the real potential for increased human activity, economic vitality, and tax revenue.

Table 2. Summary of Analysis

<table>
<thead>
<tr>
<th>Potential for Additional Vitality by Development Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1: Vacant Lots Developed to Allowed Limits</td>
</tr>
<tr>
<td>Scenario 2: Vacant Lots Developed to Height of Nearby Current Structures</td>
</tr>
</tbody>
</table>
Methodological Limitations

This analysis leaned on data from a variety of sources collected for a variety of purposes and published over the course of several years. As such, the numbers included here point to the general potential associated with building upon vacant lots and activating vacant buildings, not a specific and precise statistic or specific map of development opportunities. On any given day, one vacant lot may be purchased with a new development plan in the works while another lot that had a building undergoes demolition or vacation. The point of this analysis is to illuminate potential where it may have been hidden before, not to track each vacant lot, new development, demolition, or landmarking.